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The double-well phase of matrix models: the large-N 
general solution 

Luca Molinari and Emilio Montaldi 
Dipartimento di Fisica, via Celoria 16, 20133 Milano, Italy and INFN,  Sezione di Milano, 
Italy 

Received 18 June 1990 

Abstract. We provide the general solution of the large-hi limit of matrix models with even 
polynomial potential in the phase with two minima. The solution is given both in the saddle 
point and in the orthogonal polynomials approaches. 

1. Introduction 

In recent times a great interest has developed in the subject of the large-N limit of 
matrix models. They have been shown to provide exactly soluble models for statistical 
mechanics in two dimensions, being capable to describe random surfaces or spin 
systems on random lattices. The starting point may be traced back to Kazakov’s work 
of 1986 [l], followed by many other papers (see for example [ 2 ]  and references cited 
therein). However, in these investigations most of the attention has been devoted to 
the ‘perturbative’ sector, characterized by the presence of a single minimum in the 
even polynomial potential appearing in the partition function. On the other hand, the 
range of the parameters is wider and often involves the appearance of other regions, 
which classically correspond to new minima. In the large-N limit the transition to 
these sectors is non-analytical and gives rise, in the parameters’ space, to a phase 
diagram. Typically the transition is of third order, and has been studied for the first 
time by Gross and Witten [3] for SU(N)  models (see also Jurkiewicz and Zalewski 
[ 5 ] ) ,  and by Shimamune [4] and us [6] for models with Hermitian matrices. 

Having this in mind, it seems useful to provide the full solution to the situation 
next to the perturbative one, corresponding to the double-well configuration of the 
general polynomial potential. The solution is found both in the saddle point approach, 
which is very effective for the investigation of the phase lines, and in the orthogonal 
polynomial approach, which is most commonly used in the recent literature. The 
connection between the two approaches is also explicitly given. 

2. The saddle point method 

Our starting point is the partition function for a Hermitian N x N matrix variable with 
a generic even polynomial potential 
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The matrix is diagonalized and in a standard way one obtains an expression involving 
the eigenvalues. All the inessential factors, like the volume of the unitary group, are 
absorbed into the coefficient CN so that 

N 

ZN = n dAi A 2 ( A , ,  . . . , A N )  exp( - N  1 V(Ai)). I” i = l  i = l  

The Jacobian of the transformation is the square of the Vandermonde determinant 

A ( A l , .  . . , A N )  = n ( A ,  - A J )  = ( - l )N(N-11’2 det[Ak]k=03N-1 I 2=1 ,N (3) 
‘ ( 1  

and 

A 2 k + 2  

V ( A )  = zok+l (4) 

In the large-N limit, the ordered eigenvalues are distributed according to a density 
function that generalizes Wigner’s semicircle law (the Gaussian case). The density 
u(A),  with support L, satisfies a saddle point equation: 

1 d  
-- , (A)=,{ 2 dA L A - p  % d p  A E L  

together with a normalization condition and the requirement of vanishing at the 
endpoints of the suitably chosen support L. For the perturbative phase, where V has 
a single minimum in A = 0, one sets L = [ -2a, 2 a ]  and the solution has been given in 
the paper [7]. It is a symmetric function of the type u(A) = ( l / r )= P ( A ) ,  where 
P is a polynomial. The vanishing in A = O  gives rise to a new phase for which it is 
necessary to split the support into L = [ -B,  - A ]  U [A ,  B]. This situation corresponds 
to a double-well configuration of the potential, as will be better shown in the approach 
with orthogonal polynomials. 

It is useful to define two related parameters: 

s = ~ ( B ’ + A * )  d = :( B2 - A’). (6) 

The solution to the integral equation is accordingly searched in the form 

The square root factor is peculiar of the inversion of (5) for the given type of interval, 
by means of the PoincarC-Bertrand formula. Placing this ansatz into equation (5) one 
has to perform integrals of the type 

( B’ - X)(X - A’) 

which are easily seen to satisfy the recurrence relation & + I  = .$Zk + (Yk, where 

dXXkJ(B’ - X ) ( X  - A2) 
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The last equality corresponds to a quadratic transformation ([8] vol 1 ,  p 112, equation 
(17)) .  The recurrence relation yields an expression for the integral (8): 

Equation ( 5 )  then gives the following relation for the coefficients pr in the density of 
eigenvalues: 

C k h Z k =  P . ( A ~ ~ + ~ - S A ” - ~  r - l  1 f f r - l - jA  2,) 
n - l  

k = O  r = O  j = O  

whence 

The inspection of (12) in the cases k = 1 , 2 ,  . . . suggests a general solution of the kind 
n - r - I  

p r  = E P j C r + j + l  
j=O 

together with a constraint for the endpoints of L 
n 

1 P r c r  = O  
r = O  

where 

To prove equation (13 )  we notice the relations 

+ 2 ( r  - = p r  ( r a l )  
n 

C a r P n - r  = ( n  + 1 ) a n  
r = O  

the first of which is trivial, while the second follows from the identity 

where 
I) 

41( t, z )  = C t r2F , (  -r, f; 1 ;  z )  = ( 1  - (19) 

+ 2 ( t , z ) =  t r 2 ~ , ( - r , + ; 3 ;  Z ) = ~ ( - + ~ F G Z - ~ .  (19’) 

1 - t + zt ) -1 ’2  
r = O  

3c 

r = O  

(The infinite series are easily evaluated by expressing the hypergeometric functions as 
Eulerian integrals.) Next, by direct insertion of (13 )  into (12), the right-hand side 
becomes 

n - k - 2  

P k - I  - s p k  - 2  1 a r p k t r - r l  
r = O  

n - k  n - k - l  n - k - 2  n - k - r - 2  

= 1 P , c k s j - - s  C P j c k + j t , - 2  f f r  1 @ j C k + r t j + 2 *  
1 = 0  J =o r=O 1=0 
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In the last term the sums are exchanged and use is made of equation (17) ,  to obtain 
n - k  n - k - l  n - k - l  

pjck+j-s p]ck-tj+I-2 1 c h + l + l j c y ~ - I  
J - 0  J = @  I - 0  

by virtue of equation (16). This concludes our proof. 

the normalization condition 
Finally, by inserting the explicit expression for the density in terms of s and d into 

2 51 u ( A )  dA = 1 (22) 

we get the second equation for the endpoints of the support L: 

The two equations (14) and (23) provide a system for the evaluation of the unknowns 
s and d, that define the support. In particular, the solution with A = 0, equivalent to 
d = s, corresponds to the merging into the single-segment solution. It implies a relation 
between the parameters of the model (the coefficients in the potential) leading in 
general to a surface in the parameters’ space dividing the perturbative phase, with 
eigenvalues in a single interval, from the ‘double-well phase’. As an example, the sextic 
case ( n  = 2) is investigated in [9,10]. Other phases may also be present, for those 
values of the parameters such that either the perturbative or the double well densities 
would become negative on their support. The investigation of these more complicated 
phases would follow the same approach as described here. 

3. The orthogonal polynomials method 

A different and powerful approach to the evaluation of the partition function ZN 
employs a set of suitably chosen orthogonal polynomials [ 111. The method exploits 
the invariance properties of determinants: det[Af] = det[P,(A,)], where P k ( A )  is an 
arbitrary polynomial of order k, with the coefficient of A k  equal to one. If moreover 
the polynomials are required to satisfy the orthogonality relation 

tS 

dA P,(A)P,,,(A) e - h v c A ’  = S n m h n  (24) L 
all the integrals in the partition function may be performed, leaving us with a very 
simple result for the free energy for arbitrary N :  

where 

(26) 

The polynomials have a definite parity and satisfy the recursive relation, with Ro = 0, 

h k  R k -  ----SO. 
h k - i  

pn+l ( A  = APn ( A  - RnPn-1 ( A  (27) 
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where the coefficients Rk also solve a complicated recursive equation. This equation 
follows from the explicit computation, using ( 2 4 )  and ( 2 7 ) ,  of the integrals in the 
equality 

hi-, = dA e-Nv(A)(& Pi(A)) Pi-,(A) 
-X 

( 2 8 )  dh e-,vvlAl 2 r + l  A Pi(A)Pi - , (A)*  

We shall derive this equation in the large-N limit; the procedure strictly depends on 
the structure of the potential [12]. Indeed, the low coefficients R I ,  R 2 ,  etc, may be 
computed directly and show in the large-N limit a behaviour which depends on the 
position of the minima of the potential. For example, 

h ,  5 dA A 2  exp[-NV(A)] 
ho 

R , = - =  
J dA exp[ - NV( A ) ]  

in the large-N limit has value zero in the perturbative phase and value h2 = A i l n  in 
the double-well phase. In the perturbative phase one may therefore interpolate all the 
coefficients Rk by a single function R ( x )  with boundary value R ( 0 )  = 0. In the double- 
well phase one is forced to define two distinct interpolating functions f ( x )  or g ( x ) ,  
with x = i /  N E [ 0 ,  11 ,  such that R2, = f ( 2 i / N )  and R2,- ,  = g ( ( 2 i  - l ) / N ) .  They satisfy 
different boundary conditions: f(0) = 0 and g ( 0 )  = A'. It is useful to define the auxiliary 
functions U =f+ g, U = f g .  

To obtain the equations for U and U we start from ( 2 7 )  in terms off or g, and then 
iterate it. For a finite number of iterations, as required by the polynomial potential, 
one has to care only about parity, and in the large-N limit f=f( i/ N )  =f(( i + 2 ) /  N )  = 
. . . , g = g ( (  i + I ) /  N )  = g ( ( i  + 3 ) / N ) ,  . . . 

A R  ( A  = PI+ I ( A  ) +PI - I ( A  ( 3 0 )  

A 2 P l ( A ) =  P l + 2 ( A ) + u P , ( A ) + u P , - 2 ( A ) .  ( 3 1 )  

It is easy to see that we may write in general: 
2 r  

A 2 r + l  Pi ( A  = C Y , , r [  PI + I + 2 (  I -1 I (  A + P i  - I +2[ r -1 1 ( A )I ( 3 2 )  
J - 0  

whence iterating once: 

The comparison of the two right-hand sides gives the recursive relation: 

Y j , r + l  = Y j , r +  U Y j - 1 . r  + u y j - 2 . r .  ( 3 4 )  
By defining the generating function 
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one rewrites the recursive relation into an algebraic equation 

1 
Y 
-(#J - 1) = (1+ux+ux2)#J 

with solution 
L13 1 

= y'(l+ux+ux2)' 
#J = 1 - y ( 1 + ux + ux2) =o 

o c c c  
= y r  ( - X ) J t P C , '  - 

r = O  / = o  (2;) 

where C,!'(x) are Gegenbauer's polynomials. The solution is therefore 

If we now insert the relations (compare with (32)) 
2r+1 

J = O  
A 2r+ p, ( A  ) = C ( Y,,r + fr, - 1 , r  ) pi+ 1 +2( r - ,  A ) 

~ ~ ~ + ' p i - l ( ~ ) =  C ( r , . r + g ~ , - l , r ) ~ + 2 ( r - / ) ( ~ )  

2 r + l  

/ = 0  

into the duplicated relation (28) and perform the integrals, we obtain 
n 

r = O  

x = 2 g  C C r ( Y r , r + f Y r - l , r ) *  
r=O 

Adding and subtracting, we finally get the equations for u(x) and u(x) 
n 

x = 2 u  C c r r r - l , ,  
r =  1 

n 

O =  C C r Y r , , .  
r=O 

(37) 

(38) 

(39) 

To establish the connection with the saddle point method, we note that the explicit 
expressions ( [ 8 ]  vol2, p 176, equations (21) and (22)) 

vJ2Fl -j, j - r; -; - ( 2 4 u  
r! 

~ 2 j , r ( u I  0) = 
J !  ( r  - J ) !  

-j, j-  r +  1; -; - 
2 4u 

r! 
j ! (  r - j - I)! ~ 2 j + l , r ( ~ ,  U )  = 

imply the following identifications: 

(43) 

(44) 

It turns out that for the special value x = 1 the two equations (41) and (42) are 
respectively equivalent to (23) and (14), provided we identify U( 1) = s and U( 1) = d2/4. 
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Finally, we remark that in the double-well phase, the large-N limit of the free 
energy is given by 

( l - x ) l o g ~ ( x ) d x  
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